
Chapter 8

Basic Presence/Absence
Situation
In the preceding chapters we have considered the problem of estimating the
probability of occupancy (or proportion of units occupied) in a single season.
The methods we have detailed may provide some indication of the current pat-
terns in occupancy within that season; a snapshot of the population at a single
point in time. However as discussed in Chapter 1, despite the popularity of do-
ing so, it is not always appropriate to attempt to infer process from an observed
pattern. Often there are many processes that could result in the same pattern be-
ing observed at any given time (e.g., Pirsig, 1974; Romesburg, 1981; Nichols,
1991; Williams et al., 2002).

A much more reliable approach to understanding the processes occurring
within a system is to observe how the system behaves over a longer timeframe.
This should not be at all surprising. As an analogy, suppose that you are given a
randomly selected photograph from a stack of photographs taken throughout a
football game. You are then asked to comment on the current state of the game,
and how the game has progressed up to that point. It would be possible to tell
something about the current state of play, such as which team has the ball and
possibly the score; however, it would be impossible to make further comment
on how the game has progressed. Not until you are able to go through the entire
stack of photographs (in order) would you be able to get some idea of how the
game progressed. It is the same situation in ecological studies where processes
of population dynamics can only be fully understood by observing the popula-
tion at systematic points in time, noting how the patterns change and modeling
these changes in terms of relevant rate parameters. As emphasized in Chapter 1,
strong inferences arise when system behavior (e.g., estimated changes in rate
parameters) is compared against predictions of a priori hypotheses, especially
when system dynamics are generated by experimental manipulations within the
context of experimental design. The models of this chapter were developed to
provide the estimates needed for such investigations.

In this chapter we turn our attention to the problem of estimating occu-
pancy over multiple seasons and, in particular, understanding the underlying
population dynamics that may cause changes in the occupancy state of a unit.
These dynamic parameters are of interest in many areas of ecology, including
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metapopulation studies where the processes of local extinction and colonization
(often hypothesized to be functions of patch size and isolation from neighbor-
ing patches, respectively) produce an incidence function (e.g., Diamond, 1975;
Hanski, 1994a, 1994b). However most of the methods used to study these pa-
rameters do not explicitly account for detection probability. Moilanen (2002)
found false absences to be the greatest contributor of bias to the estimation of
the incidence function parameters. In monitoring programs, often the rate of
change in occupancy may be of as much or greater interest than the absolute
level of occupancy at any point in time. Changes in the use of different habitats
over time will also be of interest in many species-habitat studies. For example,
are the same habitats used by a species in summer and winter, or what effect has
a change in the habitat had on the species patterns of use?

We consider two general approaches for modeling changes in occupancy
over time: (1) a model where underlying dynamics are implied but not explic-
itly accounted for (effectively combining several single-season models); and (2)
explicitly modeling potential changes in the occupancy state of a unit over time
with colonization and local extinction probabilities.

8.1 BASIC SAMPLING SCHEME

We assume a situation where s units are selected from an area of interest with the
intent of establishing the presence or absence of a species, as in single-season
studies, although now the assessment is for multiple points in time. Units may
constitute naturally occurring sampling units such as discrete ponds or patches
of vegetation, investigator-defined monitoring stations, or quadrats chosen from
a predefined area of interest.

The timeframe of the study can now be considered at two scales. Firstly, at
the larger scale, the study is conducted over multiple (T ) seasons (e.g., years or
breeding seasons, denoted by t ). Each season is common to all units, with the
occupancy state of units able to change between seasons, but not within seasons.
Within each season, the smaller time scale, appropriate sampling methods are
used to survey units Kt times (Fig. 8.1). Such a design is similar to Pollock’s
robust design (Pollock, 1982) used in mark–recapture studies where seasons
represent the primary sampling periods and surveys within seasons represent
secondary sampling periods. Effectively, the general design considered here is
a sequence of single-season studies conducted at (usually) the same units for
multiple seasons.

At each survey of a unit, the target species is detected (1) or not detected (0)
and is never falsely detected when absent. The resulting sequence of detections
and nondetections for unit i, conducted during season t , is denoted as the de-
tection history ht,i . The complete detection history for unit i is denoted as hi ,
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FIGURE 8.1 Graphical representation of the sampling situation for a multi-season occupancy
study. Each triangle represents a season (t ), with multiple (Kt ) surveys within seasons. Occupancy
status is static at units within seasons, but may change between seasons through the processes of
colonization and local extinction.

and is the sequence of the T single season detection histories. For example the
detection history hi = 110 000 010 represents a three-season study (with three
surveys per season) where the target species was detected in the first and second
surveys in season 1, was never detected in season 2, and detected only in the sec-
ond survey in season 3. Similar to the single-season situation, due to imperfect
detectability, we do not know whether the species was present but undetected in
season 2 or was genuinely absent. That is, we do not know whether the species
persisted at the unit for all three seasons (i.e., never went locally extinct), or
went locally extinct and then (re)colonized the unit.

8.2 AN IMPLICIT DYNAMICS MODEL

One approach to modeling detection/nondetection data from multiple seasons is
to effectively apply a single season model to the data collected in each of the
T seasons. Under this approach, occupancy in one season is considered to be a
random process in the sense that the occupancy status of a unit in the previous
season has no effect on the probability of occupancy at the units in the current
season. Regardless of the underlying processes of change in occupancy, only
the resulting pattern or level of occupancy each season is modeled. Here, let
ψt be the probability a unit is occupied in season t , and pt,j be the probability
of detecting the species in the j th survey of a unit during season t (given the
species was present at the unit in season t ). Using the model-based approach of
MacKenzie et al. (2002) (as detailed in Chapter 4), the observed data likelihood
for season t would be

ODLt

(
ψt,pt |ht,1,ht,2, . . . ,ht,s

) =
s∏

i=1

Pr
(
ht,i |ψt,pt

)
,
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with the observed data likelihood evaluated for the full T seasons being the
product of the seasonal likelihoods, i.e.,

ODL(ψ,p|h1,h2, . . . ,hs) =
T∏

t=1

ODLt

(
ψt,pt |ht,1,ht,2, . . . ,ht,s

)
.

This same model can also be developed directly from the detection histories
using the same techniques as in the previous chapters: taking a verbal descrip-
tion of the detection histories and translating them into a mathematical equation.
Consider again the detection history hi = 110 000 010. A verbal description of
these data would be:

In season 1: the unit was occupied with the species being detected in the first
and second surveys, but not in the third.

In season 2: the unit was either occupied with the species not being detected in
any of the 3 surveys, or the unit was unoccupied.

In season 3: the unit was occupied with the species being detected in the sec-
ond survey, but not in the first or third surveys.

Translating these statements into mathematical equations using the defined
model parameters we have:

Season 1: ψ1p1,1p1,2

(
1 − p1,3

)
,

Season 2: ψ2

(
1 − p2,1

)(
1 − p2,2

)(
1 − p2,3

) +(1 − ψ2),
Season 3: ψ3

(
1 − p3,1

)
p3,2

(
1 − p3,3

)
.

Therefore the probability of observing the entire detection history would be:

Pr(hi = 110 000 010|ψ,p) = ψ1p1,1p1,2

(
1 − p1,3

)
×[

ψ2

(
1 − p2,1

)(
1 − p2,2

)(
1 − p2,3

) +(1 − ψ2)
]

× ψ3

(
1 − p3,1

)
p3,2

(
1 − p3,3

)
. (8.1)

This procedure can be used to obtain the probability statement for each of the s
observed detection histories, and the observed data likelihood would be calcu-
lated as

ODL(ψ,p|h1,h2, . . . ,hs) =
s∏

i=1

Pr(hi |ψ,p).

Expressed in terms of the underlying random variables, the implicit dynam-
ics model would be:

zt,i ∼ Bernoulli(ψt) ,

ht,ij |zt,i ∼ Bernoulli
(
zt,ipt,j

)
,

which could be used to construct the complete data likelihood.
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As in Chapter 4, this model can be easily generalized so that the probabil-
ities of occupancy and detection are functions of covariates, and to allow for
missing observations. Models can also be considered where there is some struc-
tural relationship among probabilities in different seasons. For example, Field
et al. (2005) modeled a systematic decline in occupancy over time by defin-
ing seasonal occupancy probabilities with a linear trend on the logit scale, i.e.,
logit(ψt) = β0 + β1t .

Finally, we note that although the above modeling may appear to be rel-
atively phenomenological, in the sense that vital rates (probabilities of local
extinction and colonization) governing the dynamic process do not appear ex-
plicitly in this model, it actually makes fairly restrictive assumptions about these
vital rates. In Section 10.4, we show that the implicit dynamics model is based
on the assumption that the probability of the species not going locally extinct at
a previously occupied unit is equal to the probability of colonization of a pre-
viously unoccupied unit. In the next section, we discuss a more general explicit
model of occupancy dynamics, from which the above implicit dynamics model
can be obtained as a special case.

8.3 MODELING DYNAMIC CHANGES EXPLICITLY

As noted in the previous section, the dynamic processes governing changes in
the occupancy state variable are the colonization of an unoccupied unit by the
species and the local extinction of the species at an occupied unit. In this section
we consider models that directly incorporate these dynamic processes, as they
are often of direct interest. They are somewhat analogous to the birth and death
processes of the abundance state variable and as such supply information rele-
vant to the long-term sustainability of a population. As the drivers of the system
(with respect to occupancy), understanding how these dynamic processes are
affected by changes of habitat or climatic conditions (for example) may be im-
portant for the successful management of ecological systems.

For the remainder of this chapter we consider the dynamic changes in occu-
pancy as a first-order Markov process. That is, the probability of a unit being
occupied in season t depends upon the occupancy state of the unit in the pre-
vious season, t − 1. In some situations, higher order Markov processes (e.g.,
occupancy probability at t depends upon state of occupancy at both t − 1 and
t − 2) may be biologically reasonable to represent long-term ‘memory’ about
the occupancy state of a unit. For example from mark–resight data, Hestbeck et
al. (1991) modeled transition probabilities between different wintering grounds
for Canada Geese (Branta canadensis) as a second-order Markov process to rep-
resent long term fidelity of individual birds to each region. Such an extension
could be applied using the multi-season, multi-state model (Chapter 9) where
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the state of a unit is defined in terms of occupancy status in both the current
and previous season (compared to a first-order Markov process model where, as
developed below, states are defined in terms of the current season only). This
is very similar to the approach used in the mark–recapture multi-event mod-
els (Pradel, 2005), although as in the mark–recapture setting, we would expect
such modeling to be quite data hungry (Cole et al., 2014). Green et al. (2011)
considered a second-order Markov model to accommodate the maturation pe-
riod for wood frogs (Lithobates sylvatica), but inference methods were not fully
developed.

Modeling changes in occupancy as a Markov process also accounts for a
form of temporal autocorrelation. When observations on the same sampling unit
are positively correlated, values close in time are more similar than those sepa-
rated by longer periods (i.e., the sampling variance for a short time series will
tend to be less than that of a longer time series). In the occupancy context this
equates to the expectation that a unit that is occupied now may be more likely
to be occupied again in the near future than one that is currently unoccupied.
A Markov process adequately models this autocorrelation process.

Markovian changes in occupancy can also be considered as inducing a form
of heterogeneity in occupancy probabilities where the probability of a unit being
occupied in season t will be different for units that were occupied in the previous
season, compared to the units that were unoccupied.

Formally, we define colonization (γt ) and local extinction (εt ) probabilities
to be:

γt = the probability that an unoccupied unit in season t is occupied by the
species in season t + 1; and

εt = the probability that a unit occupied in season t is unoccupied by the
species in season t + 1.

These dynamic processes represent the probabilities of a unit transitioning
between the occupied and unoccupied state between consecutive seasons
(Fig. 8.2).

Below we detail three approaches to modeling multiple-season occupancy
data that explicitly account for the processes of colonization and local extinc-
tion. First, we briefly discuss some historical approaches that were developed for
situations where the species is (assumed to be) always detected when present
at a unit (i.e., detection probability equals 1). We then focus on two methods
that allow for the imperfect detection of the species; a ‘conditional’ and an
‘unconditional’ approach. The ‘conditional’ approach exploits the similarities
between the type of data collected in the current context and capture–recapture
data collected from individuals. This approach is ‘conditional’ in the sense that
the detection history for a unit is only modeled from the season in which the
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FIGURE 8.2 Representation of how the occupancy state of a unit may change between seasons
in terms of the processes of first season occupancy (ψ1), colonization (γ ), and local extinction (ε).
Filled boxes indicate the unit is occupied (species present) in that season while empty boxes indicate
the unit is unoccupied (species absent).

species is first detected, i.e., the modeling conditions upon the first detection of
the species. This is due to the fact that in capture–recapture, an individual is
unknown to the researchers prior to the first time it is caught and marked. As a
result, it is not generally possible to obtain seasonal estimates of occupancy, only
estimates of the dynamic processes themselves. The second approach (upon
which we largely focus) is an ‘unconditional’ approach, where the modeling
makes full use of the detection histories. Here it is possible to estimate both
occupancy and the dynamic parameters.

8.3.1 Modeling Dynamic Processes when Detection Probability
is 1

In the late 1960s and throughout the 1970s, the ecological literature contained
a number of studies of animals on islands in which the presence or absence of
breeding populations (frequently of birds) was assessed over a number of differ-
ent years (see Diamond and May, 1977, and papers cited therein). This work was
motivated largely by the models of MacArthur and Wilson (1967), which sug-
gested that species richness on islands reflected a dynamic equilibrium between
rates of local extinction and colonization. Diamond and May (1977) recom-
mended that such data be viewed as having resulted from a stationary Markov
process defined by corresponding rates of extinction and colonization, a recom-
mendation that had been anticipated by Simberloff (1969). Diamond and May
(1977) focused on the implications of this model for (1) detection–nondetection
data collected at varying time intervals and (2) computation of various turnover
statistics.
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Clark and Rosenzweig (1994) (also see Rosenzweig and Clark, 1994) con-
sidered the problem of estimating extinction and colonization rates for such
a Markov model from detection–nondetection data. They provided maximum
likelihood estimates assuming both a stationary process with rate parameters
constant over time, and detection probabilities of 1. Erwin et al. (1998) expanded
this general modeling approach, considering reduced-parameter non-Markovian
models, as well as Markovian models permitting time-specific rates of local ex-
tinction and colonization. These models only provide reasonable estimates in
the situation where presence and absence can be ascertained (Clark and Rosen-
zweig, 1994; Erwin et al., 1998) and are thus of limited usefulness.

8.3.2 Conditional Modeling of Dynamic Processes

Barbraud et al. (2003) considered models for colony unit dynamics, the same
problem considered by Erwin et al. (1998), but wanted to relax the assumption
of detection probabilities equal to 1. They considered the estimation problem
by focusing on the analogy between occupancy dynamics of colony units and
population dynamics of individual animals. The simplest form of colony detec-
tion history data for multiple seasons consists of 1’s and 0’s denoting detection
or nondetection, respectively, at each study unit. These data are analogous to
capture history data for individual animals in animal populations open to gains
and losses. For example, the capture history 1 0 1 0 would indicate an animal
caught in periods (analogous to 1 survey per season) 1 and 3, but not in periods
2 and 4. The usual approach to modeling such data uses parameters for survival
from one sample period to the next and capture probability at each period (e.g.,
see Lebreton et al., 1992). Interior 0’s (followed and preceded by one or more
1’s; e.g., period 2) are usually viewed unambiguously as ‘present but not cap-
tured’ and thus modeled with the complement of capture probability. However,
this analogy is not especially useful for occupancy studies in which an interior 0
can reflect either ‘present but not detected’ or ‘absent, but followed by recolo-
nization’.

Barbraud et al. (2003) recognized that there is a close analogy between
occupancy studies and capture–recapture studies with temporary emigration
(Kendall et al., 1997; Kendall, 1999; Williams et al., 2002). In the case of tempo-
rary emigration, an interior 0 can result from either ‘presence without capture’
or ‘temporary emigration’ of the animal. Unfortunately, the probability of being
a temporary emigrant is confounded with capture probability in standard models
for open populations (Burnham, 1993; Kendall et al., 1997). However, Kendall
and Nichols (1995) and Kendall et al. (1997) recognized that the robust design
(described above, also see Pollock, 1982) provides the information needed to
estimate capture probability conditional on presence in the sampled area and
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thus allows separate estimates of this conditional capture probability and the
probability of being a temporary emigrant.

Barbraud et al. (2003) viewed the Markovian temporary emigration model of
Kendall et al. (1997) as potentially most useful for estimation in the context of
occupancy dynamics. This temporary emigration model contains two param-
eters for the probability of being a temporary emigrant (i.e., the probability
that an animal was not in the study population, but still part of the ‘super-
population’) at any sampling period: (1) for animals that were not temporary
emigrants the previous period, t − 1; and (2) for animals that were temporary
emigrants the previous period. The temporary emigration parameter for animals
that were not temporary emigrants the previous period (i.e., within the study
population at t − 1, outside the study population at t ) was viewed as local ex-
tinction probability in the context of occupancy studies (i.e., unit was occupied
at t − 1, unoccupied at t ). The complement of the second temporary emigration
parameter, i.e., 1 −Pr(an animal outside the study population at t − 1, was also
outside the study population at t ), was viewed as a probability of colonization
in occupancy studies. Under this analogy, the usual survival probability of open
capture–recapture models was set equal to 1, as it reflected the probability that
a unit always ‘survived’ (i.e., units will never ‘die’ in the sense that the species
could always recolonize the unit a later time). Note, one situation where this
might not be a reasonable assumption is where a change in the habitat or lo-
cal environment of a unit renders it uninhabitable for the species, in which case
the joint modeling of habitat and occupancy may be useful (see Chapter 13).
To complete the analogy between the temporary emigration problem and oc-
cupancy dynamics, we note that the random temporary emigration model of
Kendall et al. (1997) is equivalent to the implicit dynamics model for occupancy
(Section 8.2).

The advantage of recognizing this analogy between the modeling of tempo-
rary emigration and occupancy dynamics involved software and computations.
Software had been developed by Kendall and Hines (1999) and White and
Burnham (1999) to obtain parameter estimates under the temporary emigra-
tion models of Kendall et al. (1997) using robust design data. Barbraud et al.
(2003) thus used these programs (MARK: White and Burnham, 1999; RDSUR-
VIV: Kendall and Hines, 1999) with data from two survey flights per year over
the Camargue delta in southern France to estimate local rates of extinction and
colonization for purple heron (Ardea purpurea) and gray heron (Ardea cinerea)
breeding colonies at reed bed sites. Of particular interest, biologically, was the
modeling of time-specific local colonization in one area of the Camargue as a
function of local extinction probability in a neighboring disturbed area. This ul-
trastructural modeling dealt explicitly with spatial dependencies in occupancy
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and provided indirect inference about animal movement without using marked
individuals (Barbraud et al., 2003).

We do not present the actual temporary emigration model here, as it is best
viewed as a special case of the model of MacKenzie et al. (2003) which is
presented in detail below. Readers especially interested in the details of the
temporary emigration modeling approach for occupancy studies are directed
to Barbraud et al. (2003). The primary difference between the two approaches
(Barbraud et al., 2003; MacKenzie et al., 2003) is the conditional nature of the
temporary emigration modeling. In capture–recapture studies of animal popula-
tions, most models condition on the release of individual animals at their periods
of first capture (exceptions include the temporal symmetry models of Nichols et
al., 1986, 2000a; Pradel, 1996; Williams et al., 2002). Stated differently, the 0’s
occurring in a capture history before an animal’s first capture are not typically
modeled. However, in occupancy studies in which potential units are identified
at the beginning of the study, such conditioning is not needed, and initial 0’s can
be modeled. We thus refer to the temporary emigration modeling of Barbraud et
al. (2003) as ‘conditional’, and contrast this with the ‘unconditional’ approach
of MacKenzie et al. (2003). Both approaches should provide approximately un-
biased estimates of the dynamic processes, but the approach of MacKenzie et
al. (2003) should be more efficient and leads more readily to estimates of occu-
pancy for each season of the study.

8.3.3 Unconditional Modeling of Dynamic Processes

MacKenzie et al. (2003) used the colonization and local extinction probabilities
defined above (γt and εt ) to extend the single-season model of MacKenzie et al.
(2002). Once occupancy state (the probability of occupancy) is established in
the first season (ψ1), potential changes in the occupancy state of a unit between
seasons are simply incorporated using the dynamic parameters. To construct
their model, MacKenzie et al. (2003) used the now familiar approach of taking
a verbal description of a detection history and translating it into a mathematical
equation, giving the probability of observing the detection history. For example,
consider again the detection history hi = 110 000 010 where the occupancy sta-
tus of the unit in the second season is unknown. A verbal description of these
data that incorporates the concepts of colonization and local extinction would
be:

In season 1: the unit was occupied with the species being detected in the first
and second surveys, but not in the third.

From the end of season 1 to the start of season 3 (immediately before sur-
veying commenced): either the species did not go locally extinct between
seasons 1 and 2, was not detected in any of the 3 surveys within season 2
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and did not go locally extinct between seasons 2 and 3, or the species went
locally extinct between seasons 1 and 2, then recolonized the unit between
seasons 2 and 3.

In season 3: the species was detected in the second survey, but not in the first
or third survey.

Translating these statements into mathematical equations using the model pa-
rameters defined earlier we have:

Season 1:
ψ1p1,1p1,2

(
1 − p1,3

)
,

From the end of season 1 to the start of season 3:

(1 − ε1)

(
3∏

j=1

(
1 − p2,j

))
(1 − ε2) + ε1γ2,

Season 3:(
1 − p3,1

)
p3,2

(
1 − p3,3

)
.

The probability of observing the complete detection history would be,

Pr(hi = 110 000 010|θ) = ψ1p1,1p1,2

(
1 − p1,3

)
×

[
(1 − ε1)

(
3∏

j=1

(
1 − p2,j

))
(1 − ε2) + ε1γ2

]

×(
1 − p3,1

)
p3,2

(
1 − p3,3

)
, (8.2)

where θ is the set of parameters in the model.
Note the differences between Eqs. (8.2) and (8.1), where the dynamic pro-

cesses are not explicitly modeled. Here the model incorporates a mechanistic
process for how the occupancy state of a unit may change between seasons,
whereas in the former model only the state of occupancy each season is consid-
ered.

Formally, the explicit dynamics model could be defined in terms of the un-
derlying latent and observed random variables as:

z1,i ∼ Bernoulli(ψ1) ,(
zt,i |zt−1,i = 0

) ∼ Bernoulli(γt−1) for t = 2, . . . , T ,(
zt,i |zt−1,i = 1

) ∼ Bernoulli(1 − εt−1) for t = 2, . . . , T ,

ht,ij |zt,i ∼ Bernoulli
(
zt,iptj

)
.

Note that unlike for the implicit dynamics model, the Bernoulli distribution as-
sociated with the occupancy random variables zt,i for t = 2 . . . , T , is different
dependent upon the presence or absence of the species at the unit in the previous
season. If the species was absent from unit i in the previous season (zt−1,i = 0),
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the species is present in season t with probability γt (i.e., probability of the unit
being colonized by the species), whereas, if the species was present at unit i in
the previous season (zt−1,i = 1), the species is present in season t with probabil-
ity 1 − εt (i.e., probability the species did not go locally extinct at the unit). In
the implicit dynamics model, the probability of unit i being occupied in season
t is always ψt , irrespective of the occupancy status of the unit in season t − 1.
The conditional nature of the explicit dynamics model is what characterizes a
first-order Markov process.

Generally, there may be a number of different possible pathways that could
result in an observed detection history. MacKenzie et al. (2003) therefore sug-
gest it might be most convenient to describe the model using matrix notation
(see Appendix for a brief introduction to matrices). Let φt be the 2 × 2 matrix
denoting the probability of a unit transitioning between occupancy states from
season t to t + 1. Rows of φt represent the occupancy state of the unit in sea-
son t (state 0 = unoccupied; state 1 = occupied), and columns represent the
occupancy state at t + 1, that is:

φt =
[

1 − γt γt

εt 1 − εt

]
.

Further, let φ0 be the row vector:

φ0 =
[

1 − ψ1 ψ1

]
,

where ψ1 is the probability the unit is occupied in the first season. This vector
models whether a unit was occupied or unoccupied in the first season. Next,
define pt,j to be the detection probability matrix, defining the probability of each
type of observation (or observed state) in survey j of season t , given the true
occupancy state of a unit in season t (as used in Chapters 5 and 6). At this stage,
there are only two possible outcomes of each survey, nondetection or detection
of the species. Therefore:

pt,j =
[

1 0
1 − pt,j pt,j

]

where rows represent the true occupancy state of a unit in season t , and columns
the observed state in survey j of season t . As we described for the single-season
multi-state model, the probability of observing the detection history ht,i for unit
i in season t , conditional upon occupancy state, can be represented as the col-
umn vector ph,t . This is found by element-wise multiplication of the respective
columns of pt,j , column 1 for nondetections and column 2 for detections, as-
sociated with the observation made during each survey within the season (see
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Chapter 5 for details). For instance, ph,t for the within-season detection history
ht,i = 101 would be:

p101,t =
[

0
pt,1

]
�

[
1

1 − pt,2

]
�

[
0

pt,3

]

=
[

0

pt,1

(
1 − pt,2

)
pt,3

]
.

This expression indicates that the probability of observing this detection history
is 0 if the unit was unoccupied (the first element; as the species could not be
detected if it was absent from the unit), and pt,1

(
1 − pt,2

)
pt,3 if the unit was oc-

cupied by the species (the second element). The first element of ph,t will always
be 0 whenever the species is detected at least once at the unit during season t .
Using similar reasoning, if the species is never detected at a unit during season
t (ht,i = 000), the first element will always be 1, as this is the only observable
detection history for a unit that is unoccupied, that is:

p000,t =
⎡
⎢⎣ 1

3∏
j=1

(
1 − pt,j

)
⎤
⎥⎦ .

Using this matrix notation, the probability statement for an observed detec-
tion history, for all seasons, could be calculated as:

Pr(hi |ψ1,γ, ε,p) = φ0

T −1∏
t=1

(
D

(
ph,t

)
φt

)
ph,T , (8.3)

where D
(
ph,t

)
is a diagonal matrix with the elements of ph,t along the main

diagonal (top left to bottom right), zero otherwise. Diagonalizing the vector is
required merely for the matrix algebra to work out correctly. Note that what
Eq. (8.3) is doing is performing a series of matrix multiplications (see Appendix)
that automatically sum together the various possible outcomes that could have
resulted in the same observed detection history, rather than manually evaluating
the different options as was done when developing Eq. (8.2).

Initially Eq. (8.3) may look somewhat confusing, but stepping through the
various components, we see that it does have an intuitive interpretation. φ0 es-
tablishes the probability that a unit is either unoccupied or occupied immediately
prior to surveys commencing in season 1. The term

(
D

(
ph,t

)
φt

)
calculates the

probability of observing the particular sequence of detections and nondetec-
tions in season t (conditional upon occupancy state), and then the probability
of the unit transitioning to the occupied or unoccupied state immediately before



TABLE 8.1 Examples of detection histories (hi ) and the associated probabilities of observing them (Pr(hi |ψ1,γ, ε,p)) using the
unconditional explicit dynamics model

hi P r(hi |ψ1,γ, ε,p)

11 10 01

= φ0D
(
p11,1

)
φ1D

(
p10,2

)
φ2p01,3

=
[
1 − ψ1 ψ1

][0 0

0 p1,1p1,2

][
1 − γ1 γ1

ε1 1 − ε1

][
0 0

0 p2,1
(
1 − p2,2

)
][

1 − γ2 γ2

ε2 1 − ε2

][
0(

1 − p3,1
)
p3,2

]

= ψ1p1,1p1,2(1 − ε1)p2,1
(
1 − p2,2

)
(1 − ε2)

(
1 − p3,1

)
p3,2

00 10 00

= φ0D
(
p00,1

)
φ1D

(
p10,2

)
φ2p00,3

=
[
1 − ψ1 ψ1

]⎡⎢⎣
1 0

0
2∏

j=1

(
1 − p1,j

)
⎤
⎥⎦

[
1 − γ1 γ1

ε1 1 − ε1

][
0 0

0 p2,1
(
1 − p2,2

)
][

1 − γ2 γ2

ε2 1 − ε2

]⎡
⎢⎣

1
2∏

j=1

(
1 − p3,j

)
⎤
⎥⎦

=
⎛
⎝(1 − ψ1) γ1 + ψ1

⎛
⎝ 2∏

j=1

(
1 − p1,j

)⎞⎠(1 − ε1)

⎞
⎠p2,1

(
1 − p2,2

)⎛⎝ε2 +(1 − ε2)

2∏
j=1

(
1 − p3,j

)⎞⎠

00 00 00

= φ0D
(
p00,1

)
φ1D

(
p00,2

)
φ2p00,3

=
[
1 − ψ1 ψ1

]⎡⎢⎣
1 0

0
2∏

j=1

(
1 − p1,j

)
⎤
⎥⎦

[
1 − γ1 γ1

ε1 1 − ε1

]⎡
⎢⎣

1 0

0
2∏

j=1

(
1 − p2,j

)
⎤
⎥⎦

[
1 − γ2 γ2

ε2 1 − ε2

]⎡
⎢⎣

1
2∏

j=1

(
1 − p3,j

)
⎤
⎥⎦

= (1 − ψ1)

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 − γ1)

⎛
⎝(1 − γ2) + γ2

2∏
j=1

(
1 − p3,j

)⎞⎠+

γ1

⎛
⎝ 2∏

j=1

(
1 − p2,j

)⎞⎠
⎛
⎝ε2 +(1 − ε2)

2∏
j=1

(
1 − p3,j

)⎞⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

+ ψ1

⎛
⎝ 2∏

j=1

(
1 − p1,j

)⎞⎠
⎛
⎜⎜⎜⎜⎜⎜⎝

ε1

⎛
⎝(1 − γ2) + γ2

2∏
j=1

(
1 − p3,j

)⎞⎠+

(1 − ε1)

⎛
⎝ 2∏

j=1

(
1 − p2,j

)⎞⎠
⎛
⎝ε2 +(1 − ε2)

2∏
j=1

(
1 − p3,j

)⎞⎠

⎞
⎟⎟⎟⎟⎟⎟⎠
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surveying begins in season t + 1. This is done recursively from season 1 to im-
mediately before the final season of surveying (season T ), hence the product

term
T −1∏
t=1

(
D

(
ph,t

)
φt

)
. At this stage the equation has calculated the probability of

observing the particular detection history up to the end of the second to last sea-
son of surveying, and the unit being in either the occupied or unoccupied state
immediately prior to the surveying in season T . Therefore to complete the prob-
ability statement, the probability of observing the sequence of detections and
nondetections in the final season (conditional upon occupancy state) is required,
i.e., ph,T . This final term is not diagonalized (i.e., is just a 2 × 1 column vector)
so the result of the series of matrix multiplications is just a single number, as the
first term was a 1 × 2 row vector and all intervening matrices were of dimension
2 × 2 (see Appendix for more details on the aspect of matrix multiplication).
Some examples of observed detection histories and their probability statements,
according to the above model, are given in Table 8.1. We encourage readers
to take the time to work through these examples to cement their understanding
of the model. From the probability statements for each observed detection his-
tory, the model observed data likelihood can be calculated in the usual manner
(assuming independence of detection histories), i.e.,

ODL(ψ1,γ, ε,p|h1, . . . ,hs) =
s∏

i=1

Pr(hi |ψ1,γ, ε,p).

Note that if T = 1, that is the study is only conducted for a single season,
then the above equation reduces to Pr(hi |ψ1,p) = φ0ph,1. This is an equivalent
formulation for calculating the probability of observing a detection history for
the single season model of MacKenzie et al. (2002) (and described in Chap-
ter 4), and this matrix form is the same as that presented for the single-season
multi-state model in Chapter 5.

The complete data likelihood (CDL) for the unconditional explicit dynamics
model can also be determined by considering the underlying latent and observed
random variables, similar to the approach outlined in Section 4.4.1, but with
additional complexity to account for changes in occupancy over time. Briefly,
the key is to again assume that the latent variable for the occupancy status of
a unit is known in each season. If so, the joint probability of observing the
detection history data and presence/absence of the species in each season for
unit i could be expressed as:

Pr(hi , zi |ψ1,γ, ε,p) =
T∏

t=1

Pr
(
ht,i |pt , zt,i

)
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×
∏
t∈τ0

Pr
(
zt,i |γt−1, zt−1,i = 0

)
×

∏
t∈τ1

Pr
(
zt,i |εt−1, zt−1,i = 1

)
× Pr

(
z1,i |ψ1

)
,

where τ0 is the set of seasons between 2 and T in which unit i was unoccupied
by the species in the previous season, and τ1 is the set of seasons between 2 and
T in which unit i was occupied by the species in the previous season. Therefore,
using a CDL approach, there are four independent components associated with
the joint probability statement that determines the probability of:

1. first-season occupancy, Pr
(
z1,i |ψ1

)
;

2. extinctions,
∏
t∈τ1

Pr
(
zt,i |εt−1, zt−1,i = 1

)
;

3. colonizations,
∏
t∈τ0

Pr
(
zt,i |γt−1, zt−1,i = 0

)
;

4. detection of the species in each survey given the species presence at the unit

in each season,
T∏

t=1

Pr
(
ht,i|pt , zt,i

)
.

Note that these terms are ordered 4–1 in the expression for the CDL above, fol-
lowing convention for the ordering of the conditional events. The relevant thing
to note with the CDL approach is that unlike using the ODL, there is no sum-
mation of terms, as assuming the zt,i values are known removes the ambiguity
associated with nondetection of the species during a season. However, a differ-
ent set of estimation algorithms must be used to account for the fact that the
zt,i values are actually unobserved (e.g., expectation-maximization algorithm or
MCMC).

8.3.4 Missing Observations

Missing observations can be easily accounted for using this type of modeling
approach, as in the single-season case. If the missing observations occur within
season t , then the vector ph,t is adjusted by removing the corresponding pt,j

parameter(s). For example, if the history 11- is obtained at primary period t
(where “-” indicates a missing observation), then:

p11-,t =
[

0
pt,1pt,2

]
.

This represents that fact that no information, on either detection or nondetection,
has been collected about the parameter pt,3 from the unit with this detection
history.



Basic Presence/Absence Situation Chapter | 8 357

Similarly, the model can be adjusted to allow for situations where a unit
was not surveyed for an entire season. Consider the following detection his-
tory, where the unit was not surveyed at all in the second season, hi = 10 - - 11.
Again, no information has been collected regarding either the detection or non-
detection of the species, although here the occupancy state of the unit at sea-
son 2 is also unknown, hence all possibilities must be allowed for. This can be
achieved by (effectively) omitting ph,2 entirely; i.e. the probability of this detec-
tion history is

Pr(hi = 10 - - 11|ψ1,γ, ε,p) = φ0D
(
p10,1

)
φ1φ2p11,3.

By having the ability to accommodate missing observations, the uncondi-
tional model of MacKenzie et al. (2003) provides a great deal of flexibility in
the way the data can be collected in the field, and still be analyzed using this
technique. Not only can there be unequal sampling effort across units within
seasons, but potentially, not all units have to be surveyed each season (within
reason). However, it is important to note that even though no data were col-
lected from this unit during the second season, the associated colonization and
local extinction probabilities still appear in the probabilistic statement (within
φ2). As such, it is assumed that these probabilities are either the same, or are
functions of the same covariates, at units that are and are not surveyed within
that season. This assumption of the model must be carefully considered if a
study design is proposed that intentionally avoids surveying all units each sea-
son.

8.3.5 Including Covariate Information

Thus far in this chapter, an implicit assumption has been made that all model
parameters are constant across all units. Failure of this assumption results in
heterogeneity in model parameters, which could result in inferences that are in-
accurate. As already discussed in Chapters 4 and 7, one approach to dealing
with potential heterogeneity is the inclusion of information on variables that
may affect the value of one or more parameters, or covariates. Indeed, the rela-
tionship between the covariates and certain parameters of interest may often be
the primary motivation for conducting the study (e.g., habitat variables in habitat
modeling, or measures of isolation and patch size in metapopulation studies). As
noted in Chapters 3 and 4, covariate information can be included in the model
by use of an appropriate link function, e.g., the logit link (Chapter 3). The me-
chanics for doing so are identical to those presented in Section 4.4.8, hence we
do not cover this material again here.

Similar to the single season case, occupancy, colonization and local extinc-
tion probabilities could all be functions of variables that have a single, constant
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value for the duration of the season (season-specific covariates). These may be
variables that characterize units during each sampling season (e.g., habitat type,
average value of a weather-related variable measured during the season, eleva-
tion or patch size) or variables that characterize the change in a quantity between
seasons (e.g., changes in habitat composition). Detection probabilities can be
functions of season-specific covariates, but also functions of variables that may
change with each survey of a unit (e.g., rainfall in preceding 24 hours, air tem-
perature or observer).

There is one pertinent point about potential covariates whose values may
change from one season to the next and missing observations. As noted above,
these methods can allow for situations where units may not be surveyed in some
seasons, however in doing so, the occupancy-related parameters associated with
that season are still included in the probability statement and model likelihood.
When those parameters are being modeled as functions of covariates, the value
of the respective covariates for each unit, including the unsurveyed ones, must
be known to calculate the parameter value. There will be some classes of co-
variates for which this is problematic; covariates whose values are dynamic
over time and can only be determined during a survey of that unit. In such a
case investigators will have to develop some reasonable means to determine
what the covariate values may have been at the unsurveyed units, or else rec-
ognize that they can not use the set of affected covariates in an analysis of
the full data set (but possibly on a subset of the data with no missing val-
ues). Covariates that are unchanging over time, or the value of which can be
determined independently of the detection/nondetection surveys, could still be
used.

Having the ability to incorporate covariate information of these types pro-
vides a great deal of flexibility in the models that could be considered as reason-
able descriptions of the processes that give rise to the data. Moreover, different
hypotheses about the system can often be expressed as models that involve dif-
ferent sets of covariates for each parameter type. The strength of evidence for
each hypothesis can then be determined by fitting the suite of models with the
different sets of covariates and making a formal comparison of the models (e.g.,
by using the AIC model selection criterion). For example, in metapopulation
studies, local extinction probabilities are frequently assumed to be decreasing
functions of patch area (e.g., Moilanen, 1999). That is, the species is more likely
to go extinct from small patches than large patches. This may be reasonable for
some species, but perhaps not in every case. Furthermore in some situations,
variation in the areas of the sampled patches may be insufficient to discern such
an effect on local extinction probabilities. Therefore, a second hypothesis would
be that local extinction probabilities are constant with respect to patch area.
These competing hypotheses could be formulated as two models with different
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sets of covariates for εt . To represent the area hypothesis, a model could be fit to
the data where ‘patch area’ is included as a covariate for extinction probability,
and a second model without the ‘patch area’ covariate for εt (but identical in all
other respects) could be fit to represent the second hypothesis. The level of sup-
port for each of the two models would then reflect the degree of support of each
hypothesis. Note that one could also use a similar approach to determine the
functional form of such a relationship (e.g., linear or quadratic), or even com-
pare link functions. However, we caution that such comparisons should only be
done on the basis of sound biological reasoning, not in the pursuit of a ‘best’
model.

8.3.6 Alternative Parameterizations

MacKenzie et al. (2003) noted that in some situations quantities other than the
probability of occupancy in the first season, seasonal colonization and local ex-
tinction probabilities may be of interest. They suggested that these quantities
could be derived from the estimated parameters, or the model could be repa-
rameterized so that the quantities are estimated directly.

One immediate option is to parameterize the explicit dynamics model in
terms of the probabilities of first-season occupancy, seasonal colonization and
seasonal persistence; where persistence is defined as the probability of the unit
being occupied by the species in successive seasons. That is:

φt = Pr(species present at unit in season t + 1 | species present at unit in
season t)

= 1 − εt .

As the above indicates, persistence is the complement of local extinction prob-
ability, and distinguishing between the two is similar to distinguishing between
survival and mortality probabilities of individuals. One advantage of parame-
terizing the explicit dynamics model in terms of persistence rather than local
extinction is that all occupancy-related parameters are in terms of the probabil-
ity of the species being present at a unit, whereas local extinction is in terms of
the probability of the species being absent from a unit. We would point out, how-
ever, that persistence probabilities can be easily derived from estimates obtained
using the original parameterization by simply substituting ε̂t into the above
equation. Because persistence is the complement of local extinction, the stan-
dard error of ε̂t is also the standard error for φ̂t . Furthermore, if covariates have
been included in the modeling of local extinction and the effect sizes estimated,
to interpret the effect of those covariates in terms of persistence probability, one
just changes the sign of the estimated effect size. Once again, no adjustment to
the standard errors of the effect sizes is necessary.
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Seasonal estimates of occupancy are another such quantity. In some applica-
tions (e.g., monitoring), the processes of colonization and local extinction may
not be of direct interest with the main focus of the study being how occupancy
changes over time. The three probabilities are simply related by the recursive
equation:

ψt+1 = ψt(1 − εt ) +(1 − ψt) γt , (8.4)

i.e., units occupied next season are a combination of those units occupied this
season where the species does not go locally extinct, ψt(1 − εt ), and the units
that are currently unoccupied that are colonized by the species before next
season, (1 − ψt) γt . This is analogous to how the abundance of a species at a
particular point in time is comprised of the survivors from the previous period,
and new recruits. Eq. (8.4) can be rearranged to make either of the dynamic
processes the subject, that is:

γt = ψt+1 − ψt(1 − εt )

(1 − ψt)

or

εt = 1 − ψt+1 −(1 − ψt) γt

ψt

.

The same model as described above would be used, except rather than estimate
the γt and εt parameters directly, one would directly estimate, for example, the
seasonal occupancy and local extinction probabilities. The value for γt could
then be derived using the above formula and used in the model to evaluate the
likelihood.

There may be a temptation to use the recursive occupancy equation above
in association with the implicit dynamic modeling approach described in Sec-
tion 8.2 as a means of incorporating colonization and local extinction probabili-
ties into a multi-season occupancy model. However, doing so does not yield the
explicit dynamics approach described above. For example, consider the simple
detection history hi = 10 01. Using the unconditional approach of MacKenzie
et al. (2003), the probability of observing this history would be (where θ denotes
the set of parameters in the model):

Pr(hi = 10 01|θ) = ψ1p1,1

(
1 − p1,2

)
(1 − ε1)

(
1 − p2,1

)
p2,2,

while using the implicit dynamics model from Section 8.2, the probability would
be:

Pr(hi = 10 01|θ) = ψ1p1,1

(
1 − p1,2

)
ψ2

(
1 − p2,1

)
p2,2.
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Substituting the expression for ψ2 given by Eq. (8.4) into the implicit dynam-
ics model, does not give the equivalent of the unconditional explicit dynamics
model. That is:

Pr(hi = 10 01|θ) = ψ1p1,1

(
1 − p1,2

)
ψ2

(
1 − p2,1

)
p2,2

= ψ1p1,1

(
1 − p1,2

)[
ψ1(1 − ε1) +(1 − ψ1) γ1

](
1 − p2,1

)
p2,2

�= ψ1p1,1

(
1 − p1,2

)
(1 − ε1)

(
1 − p2,1

)
p2,2.

Another quantity suggested by MacKenzie et al. (2003) is the rate of change
in occupancy. By analogy with population size (where the comparable measure
is known as the finite rate of change or growth rate), they suggest it could be
defined as:

λt = ψt+1

ψt

.

Using the recursive occupancy equation as an intermediate step, the uncondi-
tional model could be reparameterized so that λt is estimated directly. However
there are some practical problems that limit the usefulness of this parameteri-
zation. First, there are bounds on the allowable values of λt that vary with ψt .
For example, suppose that currently the probability of occupancy is 0.5 (i.e.,
ψt = 0.5), then the maximal rate of change in occupancy, as defined above,
must be 2, otherwise the probability of occupancy in the next season will ex-
ceed 1.0. However, if currently ψt = 0.2, then the maximal rate of change in
occupancy would be 5. Second, you cannot have a constant, long-term, rate of
change greater than 1 as eventually it will result in an estimate of ψt+1 > 1. For
instance, suppose the probability of occupancy in season 1 is 0.2. A long-term
rate of change of 1.2 (i.e., occupancy probability increases by 20% each season)
would suggest that in season 10 occupancy is greater that 1.0 (0.20, 0.24, 0.29,
. . . , 0.72, 0.86, 1.03).

An alternative definition for the rate of change in occupancy is to use odds
ratios, that is:

λ′
t
= ψt+1/(1 − ψt+1)

ψt/(1 − ψt)
. (8.5)

While it may seem more complicated to interpret, it has the advantage of not
suffering from the restrictions of the above definition. Also, the general concept
is similar to that of using a logit or log-odds link function (recall from Chapter 3
that the odds ratio is the amount by which the odds of occupancy in season t is
multiplied to get the odds of occupancy in season t +1). Further, if λ′

t
is constant

across time (i.e., λ′
1 = λ′

2 = · · · = λ′
T −1), then ln(λ′) will correspond to the trend

parameter when modeling occupancy as a linear function of time on the logit
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scale:

logit(ψt) = β0 + β1t

= β0 + ln
(
λ′) t.

In some applications, researchers express an interest in ‘turnover’ of the
species, which could be defined in multiple ways. One definition would be the
probability that a unit that is occupied has just become occupied. That is:

τt = (1 − ψt) γt

ψt+1

.

Another definition for ‘turnover’ would be the probability of a unit changing
occupancy status between seasons:

τ ′
t
= ψtεt +(1 − ψt) γt .

Using either of these definitions it would be possible to reparameterize the un-
conditional explicit dynamics model, through a series of calculations, such that
these alternative quantities of interest can be estimated directly. As noted above,
however, instead of attempting to estimate these other parameters of interest
directly, they could be derived by substituting the estimated values from the
original parameterization into the respective series of equations, with the asso-
ciated standard error determined by application of the delta method (Chapter 3).
The main advantage of reparameterizing the model in terms of these alterna-
tive quantities is when there is a desire to directly model such quantities (e.g.,
consistency over time or as functions of covariates). When covariates are being
incorporated, for some quantities a link function other than the logit-link may
have to be used.

The choice of which parameterization may be most appropriate in a given
situation depends on the goals of the study and scientific questions being ad-
dressed. If the main focus is on the underlying dynamic processes and factors
that may affect them, then the original parameterization should be used. In
many management scenarios, it is natural to focus upon occupancy estimates
and changes in occupancy over time (e.g., trends in occupancy), suggesting that
one of the alternative parameterizations may be more appropriate. However, we
point out that while identifying whether the level of occupancy is increasing
or decreasing over time has some utility, oftentimes a deeper understanding of
the underlying dynamics will lead to a better understanding about how manage-
ment actions may influence occupancy dynamics, and therefore which actions
will obtain management goals most efficiently.

The results from fitting different parameterizations of the model to the same
data are comparable, including the comparison of model selection metrics such
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as AIC. There is nothing inherently wrong with the comparison of multiple
parameterizations of the model, however we suggest that choice of parameter-
ization should be generally governed by the study objective rather than fitting
models with all possible parameterizations and using model selection criteria to
differentiate among them. We have often found the original parameterization to
be the most numerically stable, particularly when a model contains a large num-
ber of covariates. As colonization and local extinction probabilities must take
values in the 0–1 interval, there are constraints on allowable values for the oc-
cupancy probability. Enforcing these constraints when using a reparameterized
version of the unconditional model can make the computer algorithms unstable.

8.3.7 Example: House Finch Expansion in North America

House finches (Carpodacus mexicanus) are native to western, but not eastern,
North America. However, they were released in 1942 on Long Island, New York,
and have exhibited an impressive westward expansion since that time. The mag-
nitude of this expansion is such that it is obvious in the raw data of the North
American Breeding Bird Survey (BBS; Robbins et al., 1986). Here we subject
the BBS data to the probabilistic modeling of this chapter in an effort to draw
formal inferences about this expansion. The BBS has been conducted annually
since the mid-1960s by volunteer observers. The counts are conducted during
the peak of the breeding season, usually during June. Observers follow a route
along roads for ∼39.2 km, stopping every 0.8 km for 50 consecutive stops. At
each stop, a point count is conducted for three minutes with observers count-
ing all birds detected within a 400 m radius. There are now >4000 BBS routes
throughout North America, so the geographic coverage is extensive.

The BBS protocol specifies that routes be run once each breeding season,
so the data do not contain the temporal replication that we typically use for
occupancy modeling. We thus take a different approach and view each of the 50
stops as a replicate count from the area covered by the route. This is far from
ideal. For example, under the view that the area covered by each stop is a random
selection from the area covered by all stops, we would ideally be sampling with
replacement. Nevertheless, given the survey design and protocol of the BBS,
we view our approach as not only reasonable, but better than most available
approaches.

To investigate the westward expansion during the period 1976–2001, data
from 694 BBS routes within 2600 km from the Long Island point of release were
considered at 5-year intervals (i.e., 1976, 1981, 1986, . . . ). We used a relatively
phenomenological kind of modeling in which we focused on how these proba-
bilities were related to distance from Long Island in each year. Thus, distance
(d) and year (year) were covariates in our analysis. Distance was measured at
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100 km increments, at the scale of 1000 km (i.e., d = 0.1 = 100 km). Year was
included in the models as a categorical covariate, or factor, with the final year
value for each parameter type treated as the standard or reference category (1996
for colonization and extinction as these are between period events, and 2001 for
detection). The only other covariate used an ad hoc approach to dealing with rel-
ative abundance of birds that was possible because of the large number of stops
per route. Specifically, we created a categorical variable for observed frequency
of occurrence (f ) indicating whether house finches were detected on >10 stops
in the route in any previous year or not (i.e., were locally highly abundant). This
covariate was used to model detection probability, along with an interaction be-
tween year and distance, and is similar in intent to defining a ‘trap response’
covariate to allow the detection probability to be different (higher) for routes af-
ter they reached this observed frequency threshold. The logit-link function was
used for all parameter types.

These covariates were used for detection probability in all models that were
fit to the data, denoted as p(year × d + f ). Only distance and year were used to
model local rates of extinction and colonization, and only distance was used to
model the initial occupancy level, ψ76(d). We assumed house finch were initially
more common closer to the release point, hence did not consider a model where
occupancy probability in 1976 was the same at all distances, i.e., ψ76(·), to be
biologically reasonable. Our prediction was that there would be an increase in
rate of colonization with distance as time progressed, i.e., the effect of distance
on colonization would increase over time, suggesting an interaction between the
year and distance covariates. We had no real expectation about rate of extinc-
tion probabilities, other than they would be generally low. Therefore, we did
not consider models that included an interaction between the distance and year
covariate to guard against obtaining a spurious result with such a small number
of events. We expected occupancy to increase with distance as time progressed,
in much the same manner as colonization (although note that occupancy proba-
bilities were derived using Eq. (8.4) for 1981 onward).

Twenty models were fit to the data using the R package RPresence and
the top eight ranked models appear in Table 8.2. The model with lowest AIC
received a model weight of 0.77, indicating a good degree of support, with
the second-ranked model having an AIC model weight of 0.23. No other mod-
els considered were supported in comparison. There is very strong evidence of
an interaction between the year and distance covariates for colonization (as in-
cluded for both top models), with the effect of distance on colonization being
different in different years. There is also very strong evidence that extinction
probability changes with distance (as appears as a covariate in both top mod-
els), with some evidence of an additive year effect (as included in second-ranked
model).
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TABLE 8.2 Summary of model selection results for the house finch example.
Factors affecting occupancy, colonization, and local extinction probabilities
include distance (d) and year (year). Occupancy and detection probabili-
ties were modeled as functions of these same factors and a categorical
variable for observed frequency of occurrence (f ); specifically ψ76(d) and
p(year × d + f ), respectively. Models are notated in terms of the factors
included for colonization (γ ) and extinction probabilities. Given are the rel-
ative differences in AIC values compared to the top ranked model (�AIC),
AIC model weights (w), the numbers of parameters in the models (Npar),
and twice the negative log-likelihood (−2l). Results are only presented for
the top eight ranked models

Model �AIC w Npar −2l

γ (year × d)ε(d) 0.00 0.77 27 44,414.09

γ (year × d)ε(year + d) 2.41 0.23 31 44,408.50

γ (year × d)ε(year) 12.72 0.00 30 44,420.81

γ (year × d)ε(·) 14.62 0.00 26 44,430.71

γ (year + d)ε(d) 29.25 0.00 23 44,451.35

γ (year + d)ε(year + d) 31.03 0.00 27 44,445.12

γ (year + d)ε(year) 40.70 0.00 26 44,456.79

γ (year + d)ε(·) 47.44 0.00 22 44,471.54

TABLE 8.3 Estimated regression coefficients (β̂) and associated standard er-
rors (SE(β̂)) for the probability house finch were present at a Breeding Bird
Survey route in 1976, on the logit-scale, i.e., logit

(
ψ76,i

)
. Given are the esti-

mates from the two models ranked highest by AIC (Table 8.2). w is the AIC
model weight for each model. Distance from Long Island (d) was measured
in 1000 km units, to the nearest 100 km

Term Model 1: w = 0.77 Model 2: w = 0.23

β̂ SE(β̂) β̂ SE(β̂)

Intercept −0.83 0.41 −0.81 0.41
d −1.22 0.48 −1.17 0.53

The estimated regression coefficients for each parameter type, on the logit-
scale, are given in Tables 8.3–8.6 from the two highest AIC-ranked models.
There is generally very good agreement in the estimated effect sizes from the
two models, especially considering the magnitude of the standard errors as-
sociated with the estimates. As predicted, the estimated effect of distance on
occupancy in 1976 is negative (Table 8.3), indicating the probability of house
finch being present at a BBS route was lower farther away from the release
point. The interaction terms for the year and distance covariates on coloniza-
tion (yeary :d ; Table 8.4) indicate how the effect of distance on colonization is
different in the respective years compared to the effect of distance in 1996 (the
reference year in this case; d). To obtain the effect of distance in each year, the
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TABLE 8.4 Estimated regression coefficients (β̂) and associated standard er-
rors (SE(β̂)) for the probability house finch colonize a Breeding Bird Survey
route between survey periods t and t + 1, on the logit-scale, i.e., logit

(
γt,i

)
.

Given are the estimates from the two models ranked highest by AIC (Ta-
ble 8.2). w is the AIC model weight for each model. Year effects yeart are
additive terms for the indicated years, distance from Long Island (d) was
measured in 1000 km units, to the nearest 100 km, and yeart :d are the inter-
action terms between year and distance

Term Model 1: w = 0.77 Model 2: w = 0.23

β̂ SE(β̂) β̂ SE(β̂)

Intercept 0.54 0.53 0.63 0.55
year76 0.89 0.80 0.83 0.82
year81 1.79 0.71 1.63 0.71
year86 1.76 0.72 1.52 0.72
year91 0.13 0.72 0.03 0.73
d −0.74 0.34 −0.78 0.34
year76:d −7.44 3.15 −7.37 3.13
year81:d −3.50 0.85 −3.33 0.85
year86:d −1.38 0.49 −1.26 0.48
year91:d 0.10 0.44 0.15 0.45

main effect of distance and the interaction terms must be added together. For
example, from the top model:

d76 = d + year76:d

= −0.74 − 7.44

= −8.18,

d81 = d + year81:d

= −0.74 − 3.50

= −4.24,

d86 = d + year86:d

= −0.74 − 1.38

= −2.12,

d91 = d + year91:d

= −0.74 + 0.10

= −0.64,
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and

d96 = d

= −0.74.

Clearly, these models suggest the effect of distance on colonization generally
increased over time, as predicted. For extinction probability, the estimated effect
of distance is positive from both models (Table 8.5) so local extinction proba-
bility was estimated to be higher farther away from Long Island, the location
of the population ‘source’, which is biologically reasonable. The year effects in
the second-ranked model suggests some temporal variation in the overall level
of extinction, although this model is not well supported. The estimated regres-
sion coefficients for detection probability (Table 8.6) suggest that the effect of
distance on detection also increased over time, similar to colonization probabil-
ity, so house finch were more detectable at greater distances from Long Island
as time progressed. This may have been due to local abundance increasing over
time after house finch colonized an area. The estimated effect of f is positive,
hence house finch were more detectable in a survey after being detected at >10
stops on a BBS route in a previous year.

The model averaged estimates of occupancy, colonization and extinction
probabilities in each year are presented in Fig. 8.3. The occupancy probabil-
ities in 1976 were estimated directly in the modeling, while the values for
subsequent years were derived from the estimated colonization and extinction
probabilities in each year, and occupancy probabilities for the preceding year,
using Eq. (8.4). No measure of uncertainty has been presented for clarity of

TABLE 8.5 Estimated regression coefficients (β̂) and associated standard er-
rors (SE(β̂)) for the probability that house finch went locally extinct from a
Breeding Bird Survey route between survey periods t and t +1, on the logit-
scale, i.e., logit

(
εt,i

)
. Given are the estimates from the two models ranked

highest by AIC (Table 8.2). w is the AIC model weight for each model. Year
effects yeart are additive terms for the indicated years, and distance from
Long Island (d) was measured in 1000 km units

Term Model 1: w = 0.77 Model 2: w = 0.23

β̂ SE(β̂) β̂ SE(β̂)

Intercept −3.39 0.26 −2.93 0.33
year76 0.33 1.29
year81 −0.13 0.72
year86 −1.17 0.68
year91 −0.60 0.37
d 1.17 0.25 1.00 0.26
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TABLE 8.6 Estimated regression coefficients (β̂) and associated standard er-
rors (SE(β̂)) for the probability house finch were detected on a Breeding Bird
Survey route at which they were present in survey period t , on the logit-
scale, i.e., logit

(
pt,ij

)
. Given are the estimates from the two models ranked

highest by AIC (Table 8.2). w is the AIC model weight for each model. Year
effects yeart are additive terms for the indicated years, distance from Long
Island (d) was measured in 1000 km units, to the nearest 100 km, yeart :d
are the interaction terms between year and distance, and f is the effect on
detection of house finch being detected at >10 stops in a previous year

Term Model 1: w = 0.77 Model 2: w = 0.23

β̂ SE(β̂) β̂ SE(β̂)

Intercept −2.09 0.05 −2.09 0.05
year76 −0.26 0.21 −0.26 0.21
year81 0.29 0.10 0.29 0.10
year86 0.62 0.08 0.62 0.08
year91 0.66 0.06 0.66 0.06
year96 0.18 0.06 0.18 0.06
d −0.43 0.05 −0.43 0.05
year76:d −9.76 2.00 −9.86 2.01
year81:d −2.85 0.43 −2.86 0.43
year86:d −1.75 0.24 −1.76 0.24
year91:d −0.41 0.08 −0.41 0.08
year96:d 0.08 0.07 0.08 0.07
f 0.94 0.03 0.94 0.03

the plots. The odds-ratio rate of change in occupancy in each year (λ′
t
, Eq. (8.5);

lower right) highlights at what distances were the fastest rates of change between
years. Note that colonization, extinction, and rate of change are between season
processes, thus there are T −1 season-specific values, while there are T season-
specific values for occupancy. This same information could also be presented in
terms of maps. For example, Fig. 8.4 presents the model averaged occupancy
probabilities estimated at different distances overlaid with a map of the eastern
USA. Similar maps could be created for the other parameters if desired. Maps
could also be produced in more complex situations involving additional covari-
ates, e.g., habitat or elevation, although we stress, as noted previously, ideally
one would not only present maps of estimates, but also some measure of uncer-
tainty (e.g., standard error, confidence interval limits, or CV) to convey to the
reader how reliable the estimates might be in different areas.

In this example, we have modeled expansion of house finch distribution as
a function of distance from its release point at Long Island, allowing the rela-
tionship between distance and the model parameters to change over time. This
enabled us to make inferences about the underlying processes associated with
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FIGURE 8.3 Model averaged estimates of occupancy (upper left), colonization (upper right), and
extinction (lower left) probabilities for house finch at Breeding Bird Survey routes in the eastern
USA, as a function of distance from the Long Island release point, in each year. The derived odds-
ratio based rate of change in occupancy as a function of distance is also presented (lower right).

changes in the house finch distribution with respect to distance from Long Is-
land, including rates of change as a function of distance. The underlying logic
easily transfers to other covariates that might be of interest in other applica-
tions. For example, how is a species distribution changing over time relative to
elevation, and at what elevations are the fastest rates of change in the species
distribution? Such information would provide insights about how species are
responding to changes in the environment.

We believe that the general topic of range expansion and contraction will
become increasingly important in the future with the spread of invasive species
and range changes induced by climate change. Monitoring programs designed
to permit estimation of occupancy will be ideally suited to study these changes.
We would like to extend these methods to more mechanistic models of range
expansion. In particular, we would like to use an approach similar to that of
Wikle (2003) to model colonization as a function of occupancy of nearby sample
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FIGURE 8.4 Maps of the model averaged occupancy probabilities in each year for house finch at
Breeding Bird Survey routes in the eastern USA.

units, rather than simply as a time×distance interaction. Incorporating spatial
correlation in the underlying occupancy dynamics would be one approach for
doing so (e.g., Bled et al., 2011, 2013; Yackulic et al., 2012; Eaton et al., 2014;
Chapter 10).

Before finishing with this example, we would like to point out that there
were a number of practical challenges associated with its preparation that users
should be aware of. These challenges were actually anticipated at the begin-
ning of our modeling effort because of the nature of the invasion process that
we sought to model. In early years following release, we knew that there were
very few data for medium to large distances from the release site. Specifically,
with very low occupancy at even intermediate distances, extinction events are
expected to be rare, as extinction is conditional on species presence. Similarly,
colonization simply did not occur at greater distances until later in the time se-
ries. The point is that we were trying to model rate parameters corresponding to
rare events (hence little data), and this will always be a difficult task. With our
treatment of year as a categorical variable, we were on the verge of asking too
much of the data. We found that the likelihood function for many of the mod-
els considered exhibited multiple maxima, and the optimization routines used



Basic Presence/Absence Situation Chapter | 8 371

by the RPresence R package, and also used by Program PRESENCE, would
sometimes converge to different maxima depending on the starting values used
for the regression coefficients. Our solution was to use five random sets of start-
ing values for each model, and use the results from the set that converged to the
highest likelihood value. In our experience the issue of multiple maxima is more
problematic for more complex models, and we advise practitioners to check for
the possibility of multiple maxima with their data. We did not check how sensi-
tive the optimization routines used by other software were to multiple maxima
with these data, but this is a general issue for any application of maximum like-
lihood estimation so we expect all software to exhibit some degree of sensitivity
to it. Another practical issue we encountered related to how we coded the year
categorical covariate, in particular, which year was treated as the standard or
reference category. Initially the first category (1976) was used, but we found
that in doing so, the software had numerical problems obtaining the variance–
covariance matrix (from which standard errors are obtained) for the estimated
regression coefficients. Recoding the year covariate such that the final year was
used as the reference category removed this issue. This is likely due to the fact
that at the beginning of the time series for these data, there were many fewer
detections than later in the time series. We therefore recommend that when us-
ing a categorical covariate, you should choose your reference category to be one
that has a fair number of detections associated with it, and not choose one with
relatively few detections.

The files used for this example can be downloaded from http://www.
proteus.co.nz.

8.4 VIOLATIONS OF MODEL ASSUMPTIONS

The assumption of no unmodeled heterogeneity in any of the parameters (oc-
cupancy, colonization, extinction or detection probabilities) is one of several
assumptions for the multiple season models presented in the chapter. Additional
assumptions include: (1) occupancy state at each unit does not change over sur-
veys within a season; that is, consistent with Pollock’s robust design, units are
‘closed’ to changes in occupancy within seasons or primary periods, (2) detec-
tion of species and detection histories at each location are independent, and (3)
the target species are never falsely detected (i.e., species are identified correctly).

If these assumptions are not met, some or all estimators may be biased,
and inferences about factors that influence both occupancy and occupancy dy-
namics may be erroneous. Even within the capture–recapture arena, there has
been little investigation of effects of heterogeneity on robust design estimators;
rather, it is believed that these estimators behave in a manner similar to those
for separate closed and open capture–recapture models (Williams et al., 2002).

http://www.proteus.co.nz
http://www.proteus.co.nz
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Assumption violations for single-season (closed) models were presented in Sec-
tion 4.4.9. In this section we briefly review anticipated impacts of occupancy
closure violations and possible solutions and then focus primarily on the im-
pacts of assumption violations on rate parameters estimated between seasons
(i.e., during the open periods). We caution readers that there have been few for-
mal investigations of assumption violations within the occupancy context, and
that information in this section is based mostly on the analogy with capture–
recapture population models that may not always have parallels to occupancy
studies.

As mentioned in previous chapters, the closed occupancy state assump-
tion within seasons can be relaxed, provided changes in occupancy are random
(sensu Kendall et al., 1997; Kendall, 1999). The species of interest is viewed as
having some non-negligible probability of being present in the unit at the time of
any survey, which is unaffected by whether the species was present at the previ-
ous survey (that would be non-random or Markovian changes within a season).
When there are random changes within each season, the occupancy estimator is
approximately unbiased, but interpreted as the probability units are used by the
target species, and detection probability is the probability the species is present
at the time of the survey and detected at occupied or used units. Therefore,
changes in ‘occupancy’ should be interpreted as changes in ‘use’, and coloniza-
tion and local extinction probabilities are the underlying dynamic parameters
governing changes in use.

Nonrandom movement of a species in and out of sample units likely causes
bias in occupancy estimators; nevertheless, if movement is always either only
in or only out of the unit(s) (i.e., immigration or emigration only) then Kendall
(1999) describes ways in which surveys can be combined to likely eliminate
bias in occupancy estimators. As noted in Section 4.4.9, Kendall’s (1999) rec-
ommendations involve pooling survey data into two surveys per season and then
using models with survey-specific detection probabilities. Specifically, for the
case of only emigration, the first survey is retained for each unit, and the last
K − 1 surveys are combined into a second ‘survey’. In the case of only immi-
gration, the first K − 1 surveys are combined and treated as the initial survey,
and survey K becomes the second survey. Under this approach, approximately
unbiased estimates can likely be obtained for either occupancy at the beginning
of each season, for emigration-only situations, or occupancy at the end of each
season for immigration-only situations (see Section 4.4.9 and Kendall, 1999,
for details). Kendall (1999) also mentions that this pooling approach is valid
within the robust design context, yielding unbiased estimates of survival rate
between primary periods. In the context of multiple season occupancy mod-
els, we would anticipate that similar pooling to accommodate emigration- or
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immigration-only movement within seasons would yield approximately unbi-
ased estimates of extinction and colonization probabilities. Bias in occupancy
estimates will likely remain if analyses are conducted using more than two sur-
veys per season or models with constant detection probability (Section 4.4.9;
Kendall, 1999). Kendall’s (1999) work suggests that unmodeled heterogeneity
or permanent trap response (see below) in detection probabilities will cause bias
in occupancy and vital rate estimators.

Another option to deal with the closure assumption is to restrict the data
to include surveys between times when the availability of the species is unin-
terrupted (i.e., during periods of closure) as demonstrated by MacKenzie et al.
(2003) with tiger salamanders in Minnesota. Here detection/nondetection infor-
mation was only included during a time period where the life history of the
species dictated that individuals would be confined to the pond (eggs, larvae
and early metamorphs). Time periods when adults may be migrating to ponds
or when metamorphs may be transitioning to a terrestrial life phase were not
included in the analysis. Again, investigators should use their knowledge about
the phenology of the target species and design their studies to try to minimize
violations in the closure assumption.

The impact of unmodeled variation in occupancy, colonization, and extinc-
tion probability among units is virtually unexplored, and more thorough simu-
lation studies are still needed. Effects of heterogeneous survival rates have been
investigated for open population capture–recapture estimators (Nichols et al.,
1982; Pollock and Raveling, 1982; Pollock et al., 1990). However, the analogy
between extinction and the complement of survival is not sufficiently close that
we are comfortable in drawing inferences about effects on extinction estima-
tors based on inferences about survival estimators. Recall, for example, to use
capture–recapture models to estimate parameters of occupancy dynamics, Bar-
braud et al. (2003) equated temporary emigration parameters with colonization
and extinction. We are aware of no investigation of the effects of heterogeneity
on the temporary emigration estimators presented by Kendall et al. (1997), so
we conclude that the effects of heterogeneous rates of extinction and coloniza-
tion are a topic of future investigation.

There are some extensions of the multi-state occupancy models discussed so
far that may be more appropriate when some of the above model assumptions
are suspected to be violated. These are discussed in the next two chapters. We
would also point out that, to the best of our knowledge, robust methods for
assessing model fit, and thereby identifying evidence of assumption violations,
are yet to be developed for multi-season models.
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8.5 DISCUSSION

We believe that this chapter may be the most important in the book. Although
most previous occupancy studies have focused on single-season patterns (the
topic of Part II), the objectives of most of these previous investigations involved
dynamic processes (see review of Chapter 2). Because of the difficulties inherent
in attempts to infer process from observation of pattern (see Chapters 1 and 2),
we believe that studies of units extending over multiple seasons are likely to
provide the strongest inferences about occupancy dynamics and the processes
that produce these dynamics. We thus believe that the models of this chapter
should see a great deal of use and that future work should focus on extensions
and elaborations of these approaches.

The implicit dynamics modeling approach of Section 8.2 essentially in-
volved multiple applications of the single-season models of Chapter 4 to species
detection data from a sequence of seasons. However, if occupancy dynamics
are best viewed as a Markov process (i.e., non-random changes in occupancy
over time), as will be reasonable in many situations, then the explicit dynamics
models of Section 8.3 should provide better descriptions of the data. In cases
for which they are appropriate, the implicit dynamics models of Section 8.2
yield time-specific estimates of occupancy, as well as estimates of rate of change
or ‘trend’ in occupancy. Trend estimates are the focus of many current animal
monitoring programs, and are justified as providing a basis for prioritization of
conservation efforts. Species and areas in which rapid reductions in occupancy
are occurring make prime targets for conservation efforts. However, estimation
of trends does not provide much information about the causes of observed de-
clines or, more importantly, about the kinds of management actions that are
likely to reverse them. It is possible to model rate of change in occupancy as
functions of environmental or management covariates, and such modeling can
prove useful. Although, we believe that direct modeling of the processes gov-
erning change is likely to be even more useful.

The models of Section 8.3 explicitly incorporate parameters for the vital
rates responsible for changes in occupancy, rates of local extinction and colo-
nization. Covariate modeling can be used to investigate effects of environmental
variables and management actions on these rate parameters. We believe that
the models of this chapter deserve much more attention than they have thus far
received, as they permit direct investigation of such topics as metapopulation dy-
namics, range dynamics, and the relationship between occupancy dynamics and
habitat change. These models also provide alternative means of investigating
population dynamics that do not require detailed studies of marked individu-
als. For example, Barbraud et al. (2003) were able to draw inferences about
bird movement (shifting of colony units) by modeling the vital rates in one lo-
cation as a function of vital rates in a neighboring location. These inferences
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were indirect, and thus not as strong as those based on observed movements of
marked animals (e.g., Nichols, 1996; Kendall and Nichols, 2004). However,
such indirect inferences can be obtained for areas too large to permit com-
prehensive capture–recapture studies, thus providing a useful complement to
more detailed intensive investigations. Finally, we discussed some of the conse-
quences of model assumption violations.

The models presented in this chapter can be used not only as a basis for
parameter estimation and data analysis, but also for prediction of species distri-
butions into the future or under alternative scenarios for the underlying dynamic
processes. Such prediction is based on the transition probability matrix, φt , and
we revisit this topic during the next two chapters.

In the following chapters we discuss a number of useful extensions and ap-
plications of these dynamic occupancy models, including multi-state models
(Chapter 9), false-positive detections, spatial correlation, investigation of the
fundamental properties of the stochastic processes governing changes in oc-
cupancy, heterogeneous detection probabilities (Chapter 10), and study design
considerations (Chapter 12). In Chapter 13 we present an approach that enables
joint modeling of both habitat and occupancy dynamics, allowing for some form
of dependence between the two sets of processes. The multi-species cooccur-
rence dynamics model outlined in Chapter 14 should prove very useful, for
example for dealing with competition between native species of conservation
concern and related species experiencing range expansions (Olson et al., 2005;
Yackulic et al., 2014). Finally, we believe that similar models of occupancy
dynamics hold great promise for investigations of such topics as multi-species
community dynamics (Chapter 15).
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